

Transforming Our Energy Economy: the Role of Renewable Energy and Energy Efficiency

Dr. Douglas J. Arent Director, Strategic Energy Analysis Center National Renewable Energy Laboratory

April 2009

Energy Solutions are Enormously Challenging

Must address all three imperatives

U.S. Energy Consumption and the Role of Renewable Energy

Units = Qbtu/year

Source: Energy Information Administration, Annual Energy Outlook 2009 early release, Table A1

http://www.eia.doe.gov/oiaf/aeo/pdf/appa.pdf

World Energy Supply and the Role of Renewable Energy

Units = Mtoe

Source: IEA/OECD, World Energy Outlook 2008, page 78, table 2.1

A Range of Possible Futures...

Economic Stimulus Through Harvesting Past Energy Investments

Current Clean Energy Trends

Renewable Energy Cost Trends

Technology Development Programs

Efficient Energy Use

- Vehicle **Technologies**
- Building **Technologies**
- Industrial **Technologies**

Renewable Resources

- Wind and water
- Solar
- **Biomass**
- Geothermal

Energy Delivery and Storage

- Electricity Transmission and Distribution
- Alternative Fuels
- Hydrogen Delivery and Storage

Foundational Science and Advanced Analytics

Energy Efficiency

Energy Efficiency Offers Low or No-Cost Carbon Reduction Options

demand for energy and transport around the world and by tropical deforestation. Source: McKinsey Global Institute, 2007

³Measures costing more than €40 a ton were not the focus of this study.

²tCO2e = ton of carbon dioxide equivalent.

⁴Atmospheric concentration of all greenhouse gases recalculated into CO₂ equivalents; ppm = parts per million. ⁵Marginal cost of avoiding emissions of 1 ton of CO₂ equivalents in each abatement demand scenario.

Net-Zero Energy Homes That Are Cash Flow Neutral

• NREL Analysis using BEOpt software for Boulder, CO climate

Buildings

Status U.S. Buildings:

- 39% of primary energy
- 71% of electricity
- 38% of carbon emissions

DOE Goal:

- Cost effective, marketable zero energy buildings by 2025
- Value of energy savings exceeds cost of energy features on a cash flow basis

NREL Research Thrusts

- Whole building systems integration of efficiency and renewable features
- Computerized building energy optimization tools
- Building integrated PV

April 10, 2008

Renewable Electricity Supply

Technology Innovation Challenges Remain

The Next Generation

- Wind Turbines
 - Improve energy capture and decrease costs
 - Goal: 20% of U.S. electricity generation by 2030
- Biofuels
 - New feedstocks
 - Integrated biorefineries
 - Goal: 36B gal/year by 2022
- Solar Systems
 - Improved performance and reduced manufacturing costs
 - Nanostructures/new materials
 - Goal: 10% of U.S. electricity by 2025
 - New Supply Options
- New Renewable Supply Options
- More Efficient Buildings
- PHEV & High Efficiency Autos
- Smart Grid

Solar Research Thrusts

Photovoltaics

- Higher performance cells/modules
- New nanomaterials applications
- Advanced manufacturing techniques

Concentrating Solar Power

- Low cost high performance storage for baseload markets
- Advanced absorbers, reflectors, and heat transfer fluids
 - Next generation solar concentrators

Wide Range of Biofuel Technologies

Advanced Vehicle Technologies

PHEVs/EVs and RETs

- Batteries and battery mgmt
- Smart Grid
- RTP/IT integration

Source: NREL Analysis

Possible CoBenefits

Source: EPRI, 2008

Challenges for Plug-Ins

- Improving batteries
 - Cost
 - Calendar and cycle life
 - Safety of Li-Ion
 - Cold temperature performance
 - Volume and packaging
- Reducing power electronics cost and volume
- Developing efficient chargers
- Standardizing plugs for charging
- Avoiding negative peak time charging impacts

Vision of Future Transportation ANREL National Renewable Energy Laboratory • Concept - Ahmad Pesaran • Illustration - Dean Armstrong •

High Power ➤

Battery Advancement Affordable High Power, Acceptable High Energy >

Affordable High Energy >

Electric Vehicles **Consumers Asking** for Plug-In **Capabilities**

Plug-In **HEVs: Early Adopters**

PHEVs: Major Consumer Adoption (low-range) (high-range)

Battery Electric Vehicles

Plug-In Hybrid Vehicles

Neighborhood Electric Vehicles

HEVs: Early Adopters

HEVs: Major Consumer Adoption

Fuel Cell Vehicles

Hybrid Electric Vehicles

Internal Combustion (ICE) Vehicles

ICE Vehicles

Gasoline, Ethanol Blends ➤

Diesel, Biodiesel Blends >

B20, Biodiesel ➤

Fuels

E85, Cellulosic Ethanol

Electricity >

Hydrogen >

New Emerging Programmatic Areas

- Enhanced Geothermal Systems
- Ocean/tidal
- Smart Grid
- Focus on translational science
- New business models for commercialization and deployment
- Analysis evaluation/validation
- International cooperation

Evaluating Potential New Directions

Enhanced Geothermal Systems

Ocean Kinetic Energy

Tidal

Pelamis—Ocean Power Delivery

Verdant—Power RITE Turbine

Looking Ahead with Optimism—American Recovery & Reinvestment

Relative Nominal LCOE with PTC and Carbon Policy

Production and investment tax credits per EPACT 2005 Carbon permit price: \$ 27/TCO2

Carbon sequestration assumed to eliminate 90% of carbon emissions

Numerical values represent total LCOE after tax credit applied

Getting to "Speed and Scale" for Renewable **Energy – Key Challenges**

Implementing Renewable Gigawatts at Scale

- Cost
- Reliability
- Infrastructure
- Dispatchability

Displacement of Petroleum-Based Fuels

- Cost
- · Life cycle sustainability
- Fuels infrastructure
- Demand and utilization

Reducing Energy Demand of Buildings, Vehicles, and Industry

- Coordinated implementation
- Valuing efficiency
- Cost
- Performance and reliability

Achieving the Potential Requires Sustained Effort

National Renewable Energy Laboratory Innovation for Our Energy Future

